Matematik Nivå 1c
Matematik
Distans, 100 poäng
Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation med hjälp av matematikens språk är likartad över hela världen. I takt med att samhället digitaliseras används matematiken i alltmer komplexa situationer. Matematik är även ett verktyg inom vetenskaper och arbetsliv och har en avgörande roll inom naturvetenskap. Ytterst handlar matematiken om att upptäcka mönster och formulera generella samband.
Undervisningen i ämnet matematik på nivå 1c ska behandla följande centrala innehåll:
Aritmetik, algebra och funktioner
- Hantering av formler och algebraiska uttryck, däribland faktorisering och multiplicering av uttryck.
- Begreppen funktion, definitionsmängd och värdemängd. Representationer av funktioner i form av ord, funktionsuttryck, tabeller och grafer. Digitala metoder för att skapa funktionsgrafer.
- Metoder för att bestämma funktionsvärden. Digitala och grafiska metoder för att lösa ekvationer av typen f(x) = a.
- Begreppet linjär funktion och egenskaper hos linjära funktioner. Räta linjens ekvation. Metoder för att bestämma linjära funktioner.
- Metoder för att lösa linjära ekvationer.
- Begreppen intervall och linjär olikhet. Metoder för att lösa linjära olikheter.
- Begreppet exponentialfunktion och egenskaper hos exponentialfunktioner. Skillnader och likheter med linjära funktioner.
- Motivering och hantering av räkneregler för potenser. Metoder för att lösa potensekvationer.
- Begreppet potensfunktion.
- Begreppet förändringsfaktor och beräkning av förändringar i flera steg.
Trigonometri och vektorer
- Begreppen sinus, cosinus och tangens. Begreppet invers funktion i samband med arcusfunktioner. Metoder för att beräkna sträckor och vinklar i koordinatsystem och i rätvinkliga trianglar.
- Begreppet vektor. Representationer av vektorer i koordinatsystem och skrivna i koordinatform. Metoder för beräkningar med vektorer, däribland addition, subtraktion, beräkning av absolutbelopp och multiplikation med skalär.
Sannolikhet och statistik
- Begreppen oberoende och beroende händelse samt komplementhändelse. Metoder för att beräkna sannolikheter i flera steg. Tillämpningar inom spel samt risk- och säkerhetsbedömningar.
- Exempel på hur några statistiska begrepp används i samhälle och inom vetenskap, däribland signifikans, korrelation, kausalitet, urvalsmetoder och felkällor.
Digitala verktyg
- Användning av kalkylprogram för beräkning av ränta och amortering.
- Användning av digitala verktyg för att effektivisera beräkningar och komplettera metoder, till exempel vid ekvationslösning och problemlösning.
- Exempel på hur programmering kan användas som verktyg vid problemlösning, databearbetning eller tillämpning av numeriska metoder.
Problemlösning och tillämpningsområden
- Problemlösning som omfattar att upptäcka och uttrycka generella samband.
- Problemlösning med särskild utgångspunkt i utbildningens karaktär, privatekonomi och samhällsliv, däribland frågeställningar som berör hållbar utveckling och hur matematik kan användas för kritisk granskning av fakta och påståenden.
- Tillämpning och formulering av matematiska modeller i realistiska situationer. Utvärdering av matematiska modellers egenskaper och begränsningar.
- Orientering om något ur matematikens historia, till exempel hur ett matematiskt begrepp utvecklats, matematikens roll i något historiskt skeende, en betydande person inom matematiken eller ett historiskt matematiskt problem.
Ämnes-/kursplan
MATE1C00X (Länk till extern sida.)
Anmälningskod
ARE-MATE1C00X
Skolform
Gymnasial utbildning
Antal Kursstarter: 6